# **Supporting Information**

# Synthesis of Pyrrolidine-Fused [34]- and [36]Octaphyrins via 1,3-Dipolar Cycloaddition

# Hiroshi Hata, Yiho Kamimura, Hiroshi Shinokubo,\* and Atsuhiro Osuka\*

Department of Chemistry, Graduate School of Science, Kyoto University and PRESTO & CREST, Japan Science and Technology Agency (JST), Kyoto 606-8502, Japan

E-mail: osuka@kuchem.kyoto-u.ac.jp; hshino@kuchem.kyoto-u.ac.jp

## **Table of Contents**

| Instrumentation and Materials         |             | S2         |
|---------------------------------------|-------------|------------|
| General Procedures and Compound Dat   | a           | <b>S</b> 2 |
| Crystallographic Data and Bond Length | Alternation | S4         |
| Copies of Spectra                     |             | S5         |

#### **Instrumentation and Materials**

<sup>1</sup>H NMR (600 MHz) and <sup>19</sup>F NMR (565 MHz) spectra were taken on a JEOL ECA-600 spectrometer, and chemical shifts were reported as the delta scale in ppm relative to CHCl<sub>3</sub> as internal reference for <sup>1</sup>H NMR ( $\delta$  = 7.260 ppm) and hexafluorobenzene as external reference for <sup>19</sup>F NMR ( $\delta$  = -162.9 ppm). UV/Vis absorption spectra were recorded on a Shimadzu UV-3100 spectrometer. MALDI-TOF mass spectra were obtained with a Shimadzu/KRATOS KOMPACT MALDI 4 spectrometer without matrix. High resolution ESI-TOF mass spectra were taken on a Bruker microTOF. X-Ray data were taken on a Bruker SMART APEX X-Ray diffractometer equipped with a large area CCD detector or a Rigaku-Raxis imaging plate system. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

#### **General Procedure**

# [3 + 2] Cycloaddition of Azomethine Ylide to Octaphyrin 1

A toluene (10 mL) solution of **1** (195 mg, 0.10 mmol), *N*-methylglycine (35.6 mg, 0.40 mmol) and paraformaldehyde (3.0 mg, 1.00 mmol) was heated at reflux for 2 h under nitrogen atmosphere. After evaporation of the solvent, purification by column chromatography with CH<sub>2</sub>Cl<sub>2</sub>/hexane (1/5) as eluent yielded bis-pyrrolidine-fused adduct **3** in 34% yield (70.2 mg, 34.0 mmol). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta = 11.93$  (s, 2H, NH), 11.26 (s, 2H, NH), 7.12 (s, 2H,  $\beta$ -H), 7.05 (s, 2H,  $\beta$ -H), 6.64 (d, J = 4.1Hz, 2H,  $\beta$ -H), 6.49 (d, J = 5.3 Hz, 2H,  $\beta$ -H), 6.36 (d, J = 5.3 Hz, 2H,  $\beta$ -H), 6.08 (d, J = 4.1 Hz, 2H,  $\beta$ -H), 5.24 (dd, J = 7.0, 7.0 Hz, 2H, pyrrolidine  $\beta$ -H), 4.60 (dd, J = 7.0, 7.0 Hz, 2H, pyrrolidine  $\beta$ -H), 3.29 (d, J = 9.0 Hz, 2H, pyrrolidine  $\alpha$ -H), 3.27 (d, J = 9.0 Hz, 2H, pyrrolidine  $\alpha$ -H), 3.03 (dd, J = 7.0, 9.0 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (dd, J = 7.0, 9.0 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.35 (s, 6H, CH<sub>3</sub>);  $\lambda_{max}$  (CH<sub>2</sub>Cl<sub>2</sub>) ( $\varepsilon$  [M<sup>-1</sup>cm<sup>-1</sup>]) = 661 (5.5 × 10<sup>4</sup>), 564 (1.0 × 10<sup>5</sup>), 545 (1.0 × 10<sup>5</sup>), 362 nm (4.9 × 10<sup>4</sup>); HR-ESI-MS: m/z = 2063.2309. calcd for C<sub>94</sub>H<sub>35</sub>F<sub>40</sub>N<sub>10</sub>: 2063.2402 [(M+H)<sup>+</sup>].

### **Compound Data for 2**

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 12.41 (s, 1H, NH), 12.17 (s, 1H, NH), 12.06 (s, 1H, NH), 11.27 (s, 1H, NH), 8.38 (d, *J* = 5.0 Hz, 1H, β-H), 8.35 (d, *J* = 5.0 Hz, 1H, β-H), 7.74 (s, 1H, β-H), 7.32 (s, 1H, β-H), 7.05 (s, 2H, β-H), 6.65 (d, *J* = 4.6 Hz, 1H, β-H), 6.62 (d, *J* = 4.6 Hz, 1H, β-H), 6.50 (d, *J* = 5.0 Hz, 1H, β-H), 6.48 (d, *J* = 5.0 Hz, 1H, β-H), 6.31 (d, *J* = 5.0 Hz, 1H, β-H), 6.30 (d, *J* = 5.0 Hz, 1H, β-H), 6.08 (d, *J* = 4.6 Hz, 1H, β-H), 6.05 (d, *J* = 4.6 Hz, 1H, β-H), 5.72 (dd, *J* = 7.3, 7.3 Hz, 1H, pyrrolidine β-H), 4.99 (dd, *J* = 7.3, 7.3 Hz, 1H, pyrrolidine β-H), 3.41 (d, *J* = 9.0 Hz, 1H, pyrrolidine α-H), 3.28 (dd, *J* = 7.3, 9.0 Hz, 1H, pyrrolidine α-H), 3.10 (dd, *J* = 7.3, 9.0 Hz, 1H, pyrrolidine α-H), 2.42 (s, 3H, CH<sub>3</sub>);  $\lambda_{\text{max}}$  (CH<sub>2</sub>Cl<sub>2</sub>) ( $\varepsilon$  [M<sup>-1</sup>cm<sup>-1</sup>]) = 663 (3.6 × 10<sup>4</sup>), 611 (5.5 × 10<sup>4</sup>), 581 (6.0 × 10<sup>4</sup>), 545 (5.2 × 10<sup>4</sup>), 420 (2.9 × 10<sup>4</sup>), 364 nm (3.0 × 10<sup>4</sup>); HR-ESI-MS: m/z = 2006.1761. calcd for C<sub>91</sub>H<sub>28</sub>F<sub>40</sub>N<sub>9</sub>: 2006.1823 [(*M*+*H*)<sup>+</sup>].

#### MnO<sub>2</sub>-Oxidation of [36]Octaphyrin 3 to [34]Octaphyrin 4

To a solution of **3** (41.2 mg, 0.02 mmol) in dichloromethane (50 mL), MnO<sub>2</sub> (17.4 mg 0.20 mmol) was added. After stirring for 10 min, MnO<sub>2</sub> was removed by alumina short column and the solvent was evaporated. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub> and hexane afforded purple solid of **4**. Spectroscopic data for **4**: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta = 11.72$  (s, 2H, NH), 6.58 (d, J = 4.9 Hz, 2H,  $\beta$ -H), 6.54 (d, J = 4.8 Hz, 2H,  $\beta$ -H), 6.52 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 6.46 (d, J = 4.9 Hz, 2H,  $\beta$ -H), 6.14 (d, J = 4.6Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 5.97 (d, J = 4.7 Hz, 2H,  $\beta$ -H), 3.31 (d, J = 9.7 Hz, 2H, pyrrolidine  $\alpha$ -H), 2.90 (d, J = 8.9 Hz, 2H,  $\beta$ -H), 3.31 (d,  $\beta = 9.7$  Hz, 2H,  $\beta = 1.7$  Hz, 2Hz,

2H, pyrrolidine  $\alpha$ -H), 2.80 (t, J = 7.1 Hz, 2H, pyrrolidine  $\beta$ -H), 2.03 (s, 6H, CH<sub>3</sub>), 1.52 (t, J = 8.8 Hz, 2H, pyrrolidine  $\beta$ -H), 1.34 (d, J = 10.6 Hz, 2H, pyrrolidine  $\alpha$ -H), 1.32 (d, J = 8.2 Hz, 2H, pyrrolidine  $\alpha$ -H);  $\lambda_{\text{max}}$  (CH<sub>2</sub>Cl<sub>2</sub>) ( $\varepsilon$  [M<sup>-1</sup>cm<sup>-1</sup>]) = 658 (1.3 × 10<sup>5</sup>), 393 nm (6.0 × 10<sup>4</sup>); HR-ESI-MS: m/z = 2061.2192. calcd for C<sub>94</sub>H<sub>33</sub>F<sub>40</sub>N<sub>10</sub>: 2061.2245 [(M+H)<sup>+</sup>].



Figure S1. Bond lengths [Å] of **3** and **4**.





